Thursday, June 3, 2010

Gamma-rays

Gamma-Rays

Gamma-rays have the smallest wavelengths and the most energy of any other wave in the electromagnetic spectrum. These waves are generated by radioactive atoms and in nuclear explosions. Gamma-rays can kill living cells, a fact which medicine uses to its advantage, using gamma-rays to kill cancerous cells.

Gamma-rays travel to us across vast distances of the universe, only to be absorbed by the Earth's atmosphere. Different wavelengths of light penetrate the Earth's atmosphere to different depths. Instruments aboard high-altitude balloons and satellites like the Compton Observatory provide our only view of the gamma-ray sky.


Gamma-rays are the most energetic form of light and are produced by the hottest regions of the universe. They are also produced by such violent events as supernova explosions or the destruction of atoms, and by less dramatic events, such as the decay of radioactive material in space. Things like supernova explosions (the way massive stars die), neutron stars and pulsars, and black holes are all sources of celestial gamma-rays.


Gamma-ray bursts can release more energy in 10 seconds than the Sun will emit in its entire 10 billion-year lifetime! So far, it appears that all of the bursts we have observed have come from outside the Milky Way Galaxy. Scientists believe that a gamma-ray burst will occur once every few million years here in the Milky Way, and in fact may occur once every several hundred million years within a few thousand light-years of Earth.

Studied for over 25 years now with instruments on board a variety of satellites and space probes, including Soviet Venera spacecraft and the Pioneer Venus Orbiter, the sources of these enigmatic high-energy flashes remain a mystery.

By solving the mystery of gamma-ray bursts, scientists hope to gain further knowledge of the origins of the Universe, the rate at which the Universe is expanding, and the size of the Universe.



No comments:

Post a Comment